Robust Learning Algorithm with LTS Error Function
نویسنده
چکیده
Feedforward neural networks (FFNs) are often considered as universal tools and find their applications in areas such as function approximation, pattern recognition, or signal and image processing. One of the main advantages of using FFNs is that they usually do not require, in the learning process, exact mathematical knowledge about input-output dependencies. In other words, they may be regarded as model-free approximators (Hornik, 1989). They learn by minimizing some kind of an error function to fit training data as close as possible. Such learning scheme doesn’t take into account a quality of the training data, so its performance depends strongly on the fact whether the assumption, that the data are reliable and trustable, is hold. This is why when the data are corrupted by the large noise, or when outliers and gross errors appear, the network builds a model that can be very inaccurate. In most real-world cases the assumption that errors are normal and iid, simply doesn’t hold. The data obtained from the environment are very often affected by noise of unknown form or outliers, suspected to be gross errors. The quantity of outliers in routine data ranges from 1 to 10% (Hampel, 1986). They usually appear in data sets during obtaining the information and pre-processing them when, for instance, measurement errors, long-tailed noise, or results of human mistakes may occur. Intuitively we can define an outlier as an observation that significantly deviates from the bulk of data. Nevertheless, this definition doesn’t help in classifying an outlier as a gross error or a meaningful and important observation. To deal with the problem of outliers a separate branch of statistics, called robust statistics (Hampel, 1986, Huber, 1981), was developed. Robust statistical methods are designed to act well when the true underlying model deviates from the assumed parametric model. Ideally, they should be efficient and reliable for the observations that are very close to the assumed model and simultaneously for the observations containing larger deviations and outliers. The other way is to detect and remove outliers before the beginning of the model building process. Such methods are more universal but they do not take into account the specific type of modeling philosophy (e.g. modeling by the FFNs). In this article we propose new robust FFNs learning algorithm based on the least trimmed squares estimator.
منابع مشابه
Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease
Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...
متن کاملA Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition
Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کامل